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INTRODUCTION

To make possible the study of hypervelocity phenomena in
the laboratory, two-stage hypervelocity model launchers have
been developed to propel projectiles at velocities presently as
high as 34,000 feet pec second (this velocity has been achieved
at the NASA Laboratory at Ames). Due to the multiple number of
phenomena occurring in a two-stage launcher, it becomes very
difficult to predict launching velocities and virtually impos-
sible to determine how to vary the launcher parameters to
maximize the velocity capability of the launcher. Maximizing
the velocity capability while maintaining a moderate pressure
behind the projectile is particularly difficult: this has been
a problem of interest for the Naval Ordnance Laboratory Launchers
which have been used to launch ijcale models that cannot withstand]
high accelerations. To overcome the tediousness of hand calcu-
lations and the inaccuracies of approxi:aate analyses (see for
example, ref. (1)), calculations of the performance of a two-
stage model launcher were done numerically by the authors,
utilizing an IBM 7090 computer. The method of calculation and
some results are described below.

DESCRIPTION OF THE COMPUTER CODE

The computer code is a one-dimensional hydrodynamic
program, using the Lagrangian scheme, and is based on the "q"
method as devised by Von Neumann and Richtmyer (refs. (2) and
(3)). The code solves quasi-one-dimensional hydrodynamic
problems, i.e., it will handle cases of one-dimensional flow
through ducts cf varying cross section, Automatic treatment
of the shock by the "q" method lends itself nicely to the
solution of multiple shock systems such as occur in the two-
stage light-gas launchers.

The computer program, which is written in FORTRAN for the
IBM 704 and 7090 computers (refs. (4) and (5)', is a modification
of a program prep.ared by W. A. Walker of the Explosion Dynamics
Division of the Naval Ordnance Laboratory. The code is similar,
in many respects, to an earlier non-FORTRAN program obtained
from the Lawrence Radiation Laboratory, Livermore, California,
in 1957.

In the Lagrangian scheme the system is 4ivided into reqions,
each having its own equation of state,* and each region being
further subdivided into zones. Mass points containing one-half
the mass of each of two adjacent zones are assumed at the
interface of these two zones. These mass points are labeled
initially (see fig. 1) and carry these labels throughout the
entire commutation. The hydrodynamic equations of motion
* The equation of state may be that of solids, liquids or

ideal and non-±deal gases.
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ideal and non-±deal gases.
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and conservation of eneroy are put into finite difference form.
These, along with a suitable stability calculation, are then
solved numerically to determine the subsequent motion of these
weighted interfaces.

Initial values of the internal energy Eo, the densitv 1,o,
the specific volume Vo, the pressure po and the velocity uo
are given for each zone. The new values of these ,.triables and
the new positions of the mass points are calculated by numerically
integrating the hydrodynamic equations- An appropriate variable
time increment is calculated for the numerical integration at
each computation cycle to assure stability of the finite diffr--
ence equations. At each time step, the pressure difterentia'
at each interface is used in the equation ifl ,notion to determine
the acceleration of the mass points. UsL'iq the accelerations,
the new velocities are computed. Knuwing the: position of its
interfaces, the volume of a zone is computed. The pressure and
internal energy are then obtained by a ýtngle iteration of the
equation of state and the energy equation. In this manner the
scheme provides a complete history of the position and velocity
of the mass points and of the volume, pressure, and internal
energy of the zones.

The code usce thc following hydrodynamic equations:

Energy equation for isentropic flow

DE 2 _ )oV

EquatioL of state

PQE~v)(2)

Equation of motion

_ __ A(3)
Dt 1

where M, the mass, is defined in the equation

A (x)(4)

2



NOLTR 62-87

In the "q" method, equations (1) and (3) are rewrNttNn u nsl

where

The term q, which is addm to the pressure in equations
(5) and (6), acts as an artificial dissipative mechamiimm m ,
giving the correct entropy change across the shock c~nd alluis~
the hydrodynamic variaoles to be continuous across thle shock
front. C0 is a constant which can be adjusted to spread the
shock over a desired number of zones.

Equations (5), (6), (7), and (8) appear below in
differencedrm al wiong with tne other necessary equations in
logical sequence as used in the program

;( , A ( (9)

3.........-. ) f f xo
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A x (X t d t A I()

2C. 

4.

at Lth+ < t (3

V I + - i k' '

0 3 Lt > L (14)

J4-/ --

Es 2C . jj- \/I• (15)

it,,

(16

j 1, 2, 3 --- Jmax
n 0 1 2
At n 2 + 112
At r .(tn +-1 2 + tn /) /2
AM i 1/2 = 'one mass
A(X)nj = cross-sectional area at X

Here j refers to the mass point number and n the time cycle
number
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TWO-STAGE GUN PROCESS

It is known that for an isentropically expanding gas (ideal)
pushing a projectile, the pressure drop behind the projectile
may be decreased by using a propellant gas with a high initial
sound speed, ao, and a low specific heat ratio 'y. Since y for
gases does not differ widely, much effort is given to obtain a
high initial sound speed for the driver gas.

One method of obtaining a high sound speed driver is the
two-stage gun. The events occurring in the operation of a
two-stage gun can be described in the following way.

Fig. A Fig. B

The back chamber contains a propellant which is burned to a
high pressure. The front chamber or "pump tube" contains a
low-molecular-weight gas such as hydrogen or helium initially
at a much lower pressure than the peak pressure of the back
chamber gas (fig. A). The diaphragm separating the back and
front chambers is opened near the back chamber peak pressure,
causing the piston to be accelerated. A shock precedes the
piston down the pump tube which reflects between the piston
and the end of the pump tube several times, raising the temper-
ature and pressure of the light gas (fig. B). The resulting
high teiperature, along with the low molecular wcight of ti.-
gas produces a much higher sound speed for the pump tube gas
than was possible to attain for the back chamber driver.

Although the drop in pressure behind a projectile may be
decreased by increasing the sound speed in the driver gas, the
increase in scznd speed praccically attainable is insufficient
in itself to maintain the pressure at the desired constant value.

S!5
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What i. required is that the reservoir pressure in the pump
tube be increased during the movement of the projectile. By
so doing the tendency of the pressure behind the projectile
to drop is overcome. The higher the sound speed of the driver
gas, the less is the required reservoir pressure increase to
maintsin the pressure behind the projectile constant. In
practice the reservoir pressure would be required to rise
perhaps a factor of 10 or more times the value of the pressure
behind the projectile to maintain it constant.

The two-stage gun provides the possibility of increasing
the reservoir pressure in the pump tube by means of the piston
in the pump tube which, by its movement, compresses the
reservoir gas, thus effecting the required increase of pressure.

Therefore, the condition desired in the two-stage gun is
a constant pressure behind the projectile as a result of the
proper increase of pump tube reservoir pressure. The selection
of the variables required to attain this condition is almost
impossible by means of hand calculations. The electronic
computing machine offers a means for selection of the required
parameters.

The processes occurring in the two-stage gun are readily
seen in the plots of information as obtained from the electronic
computer. Figure 2 is a typical calculated distance-time plot
showing the trajectories of shocks between the piston and
projectile, the piston trajectory, and the projectile tritjectory.
Figure 3 is a plot of calculated pressure behind the model as a
function of distance along the barrenL. Figure 4 is a calcu-
lated velocity-time plot of the projectile and shows clearly
the effect of shock impingenents on the back of the model.

CALCULATIONS AND RESULTS

Many calculations were made to determine optimum gun
operating conditions for various NOL Hypervelocity Facilities.
As mentioned above, the problem of optimum performance is
complex due to the number of parameters involved. For a given
gun geometry these parameters are the initial bac'-chamber
conditions, the initial front-chamber conditions, the weight
of the piston, the weight of the piojectile anti the projectiLe
release pressure. There are certain physical restrictions
existing on the facility and the projectile; these being, a
limiting pressure that the gun can contain without damage being
done, and a mavbn.um acceleration that the projectile can with-
stand without breaking up. In addition, it may be desired to
vary the gun geometry itself (length and diameter of launch

6



NOLTR 62-87

tube, etc.) to obtain an optimum model launcher. By adjusting
the above parameters, keeping in mind the physical limitations,
optimum operating conditions can be determined.

A typical set of computer calculated results for the 2-in,
Two-Stage Hypervelocity Model Launcher, which is in use in the
NOL 1,000-ft. Hyperballistics Range No. 4, are shown in Tables
1, 2, and 3. Figure 5 shows the dimensions of the 2-in, two-
stage facility. A large portion of the success of this tacility'
in presently firing saboted m'ldels of various aerodynamic
configurations over 17,000 freet per second is attributed to
these calculations (Y.cf, (0)). Figure 6 is a photograph ol tfe !
type of cone model fired in the range at velocities exceecfli4
17,100 feet per second, The computer calculation showed That
the highest pressure the projectile would feel was 25,000 z'. 1
Figure 7 is a photograph of a more blunt-nosed model in fliglL,
This type has been launched successfully at 20,000 feet per
second in another of the NOL Ballistics Ranges for which calcu-
lations had been made.

The calculations assume the back-chamber propellant is
preburned and is an ideal gas with a constant specific heat
ratio y. A constant -y is also used for the pump tube gas,
Co-volume effects in the pump tube gas were taken into account
for the 2-in. two-stage calculations,*

The calculations for the 2-in. two-stage launcher for the
higher velocity cases ( > 1i,000 feet per second) predict
higher velocities (about 10 percent higher) that are obtained
experimentally, Figure 0 shows a comparison of the :heoretical
calculations and the experiment,l results.** For smaller bore
launchers the deviation appears more serious, This is not
disturbing in that one is still gjuided in the direction to
vary the parameters for optimizing the performance, The aifter-
ence in predicted velocities and experimental 'zlocities is
attributed largely to frictional effects. The frictional effects
can be accounted for, but only at the expense of computer time
which is costly. when optimum conditions are obtained, losses
due to friction can be taken into account for that set of
conditions (ref. (7)).

CONCLUSION

Two-stage gun performance calculations were made using a
one-dimensional hydrodynamics computcr code, This code takes

* As noted before, any equation of state may be used for the
gas.

** The experimentat firings were made with the barrel evacuated.

7
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acco-rt of the gas dynamic processes occurring including the
shocks which are reflected back and forth both in the Pump
tube and in the barrel. The true eauations of state are used
for the gases as well as for the piston and projectile.
Although the code is one-dimensional, it had been Previously
demonstrated experimentally that the one-dimensional approxi-
mation is excellent for unsteady flows between tubas of
different diameters (ref. (8)). Priction effects can also
be taken into account in this code.

Predictions by approximate methods of computations for
the pressure experienced by the model have been found to be
in error by a factor which may be as high as 4 since the sharp
pressure Peaks which occur are not accounted for by thene
approximate methods. Without the computer codo it becomes
virtually impossible to select conditions for launching fragile
models (such as the cone shown in fig. 6) at relatively high
velocities without failure of the model. A common experience
in attempting to launch such a small angle cone in ballistic
range facilities is the emergence of the cone with the nose tin
broken off (spalled). On the basis of the experience gained
with the NOL Two-Stage Launchers, it is felt that successful
launching of fragile models at high velocities can only be
achieved without the necessity for many trials with a computer
program of this type which accurately calculates the conditions
occurring during the firing.

8•
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